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ABSTRACT
RocksDB is an embedded, high-performance, persistent key-
value storage engine developed at Facebook. Much of our
current focus in developing and configuring RocksDB is to
give priority to resource efficiency instead of giving priority
to the more standard performance metrics, such as response
time latency and throughput, as long as the latter remain
acceptable. In particular, we optimize space efficiency while
ensuring read and write latencies meet service-level require-
ments for the intended workloads. This choice is motivated
by the fact that storage space is most often the primary
bottleneck when using Flash SSDs under typical production
workloads at Facebook. RocksDB uses log-structured merge
trees to obtain significant space efficiency and better write
throughput while achieving acceptable read performance.

This paper describes methods we used to reduce storage
usage in RocksDB. We discuss how we are able to trade
off storage efficiency and CPU overhead, as well as read
and write amplification. Based on experimental evaluations
of MySQL with RocksDB as the embedded storage engine
(using TPC-C and LinkBench benchmarks) and based on
measurements taken from production databases, we show
that RocksDB uses less than half the storage that InnoDB
uses, yet performs well and in many cases even better than
the B-tree-based InnoDB storage engine. To the best of our
knowledge, this is the first time a Log-structured merge tree-
based storage engine has shown competitive performance
when running OLTP workloads at large scale.

1. INTRODUCTION
Resource efficiency is the primary objective in our storage
systems strategy at Facebook. Performance must be suffi-
cient to meet the needs of Facebook’s services, but efficiency
should be as good as possible to allow for scale.
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Facebook has one of the largest MySQL installations in
the world, storing many 10s of petabytes of online data. The
underlying storage engine for Facebook’s MySQL instances
is increasingly being switched over from InnoDB to My-
Rocks, which in turn is based on Facebook’s RocksDB. The
switchover is primarily motivated by the fact that MyRocks
uses half the storage InnoDB needs, and has higher average
transaction throughput, yet has only marginally worse read
latencies.

RocksDB is an embedded, high-performance, persistent
key-value storage system [1] that was developed by Face-
book after forking the code from Google’s LevelDB [2, 3].1

RocksDB was open-sourced in 2013 [5]. MyRocks is Rocks-
DB integrated as a MySQL storage engine. With MyRocks,
we can use RocksDB as backend storage and still benefit
from all the features of MySQL.

RocksDB is used in many applications beyond just My-
SQL, both within and outside of Facebook. Within Face-
book, RocksDB is used as a storage engine for Laser, a
high query throughput, low latency key-value storage ser-
vice [6], ZippyDB, a distributed key-value store with Paxos-
style replication [6], Dragon, a system to store indices of the
Social Graph [7], and Stylus, a stream processing engine [6],
to name a few. Outside of Facebook, both MongoDB [8]
and Sherpa, Yahoo’s largest distributed data store [9], use
RocksDB as one of their storage engines. Further, RocksDB
is used by LinkedIn for storing user activity [10] and by Net-
flix to cache application data [11], to list a few examples.

Our primary goal with RocksDB at Facebook is to make
the most efficient use of hardware resources while ensur-
ing all important service level requirements can be met, in-
cluding target transaction latencies. Our focus on efficiency
instead of performance is arguably unique in the database
community in that database systems are typically compared
using performance metrics such as transactions per minute
(e.g., tpmC) or response-time latencies. Our focus on effi-
ciency does not imply that we treat performance as unim-
portant, but rather that once our performance objectives are
achieved, we optimize for efficiency. Our approach is driven
in part by the data storage needs at Facebook (that may
well differ from that of other organizations):

1. SSDs are increasingly being used to store persistent
data and are the primary target for RocksDB;

2. Facebook relies primarily on shared nothing configura-

1A Facebook blog post lists many of the key differences be-
tween RocksDB and LevelDB [4].



tions of commodity hardware in their data centers [12],
where data is distributed across a large number of sim-
ple nodes, each with 1-2 SSDs;

3. the amount of data that needs to be stored is huge;

4. the read-write ratio is relatively low at roughly 2:1
in many (but not all) cases, given the fact that large
memory-based caches are used extensively.

Minimizing space amplification is important to efficient hard-
ware use because storage space is the bottleneck in environ-
ments like the one described above. In a typical production
MySQL environment at Facebook, SSDs process far fewer
reads/s and writes/s during peak times under InnoDB than
what the hardware is capable of. The throughput level un-
der InnoDB is low, not because of any bottleneck on the SSD
or the processing node — e.g., CPU utilization remains be-
low 40% — but because the query rate per node is low. The
per node query rate is low, because the amount of data that
has to be stored (and be accessible) is so large, it has to be
sharded across many nodes to fit, and the more nodes, the
fewer queries per node.

If the SSD could store twice as much data, then we would
expect storage node efficiency to double, since the SSDs
could easily handle the expected doubling of IOPS, and we
would need far fewer nodes for the workload. This issue
drives our focus on space amplification. Moreover, minimiz-
ing space amplification makes SSDs an increasingly attrac-
tive alternative compared to spinning disks for colder data
storage, as SSD prices continue to decline. In our pursuit
to minimize space amplification, we are willing to trade off
some extra read or write amplification. Such a tradeoff is
necessary because it is not possible to simultaneously reduce
space, read, and write amplification [13].

RocksDB is based on Log-Structured Merge-Trees (LSM-
trees). The LSM-tree was originally designed to minimize
random writes to storage as it never modifies data in place,
but only appends data to files located in stable storage to ex-
ploit the high sequential write speeds of hard drives [14]. As
technology changed, LSM-trees became attractive because
of their low write amplification and low space amplification
characteristics.

In this paper, we describe our techniques for reducing
space amplification within RocksDB. We believe some of
the techniques are being described for the first time, in-
cluding dynamic LSM-tree level size adjustment, tiered com-
pression, shared compression dictionary, prefix bloom filters,
and different size multipliers at different LSM-tree levels.
We discuss how the space amplification techniques affect
read and write amplification, and we describe some of the
tradeoffs involved. We show by way of empirical measure-
ments that RocksDB requires roughly 50% less storage space
than InnoDB, on average; it also has a higher transaction
throughput, and yet it increases read latencies only mar-
ginally, remaining well within the margins of acceptability.
We also discuss tradeoffs between space amplification and
CPU overhead, since the CPU may become a bottleneck
once space amplification is significantly reduced.

We demonstrate, based on experimental data, that a stor-
age engine based on an LSM-tree can be performance com-
petitive when used on OLTP workloads. We believe this is
the first time this is shown. With MyRocks, each MySQL
table row is stored as a RocksDB key-value pair: the pri-
mary keys are encoded in the RocksDB key and all other
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Figure 1: SST file organization. Each level maintains a set of
SST files. Each SST file consists of unaligned 16KB blocks with
an index block identifying the other blocks within the SST. Level
0 is treated differently in that its SST files have overlapping key
ranges, while the SST files at the other level have non-overlapping
key ranges. A manifest file maintains a list of all SST files and
their key ranges to assist lookups.

row data is encoded in the value. Secondary keys, which
are not necessarily unique, are stored as separate key-value
pairs, where the RocksDB key encodes the secondary key
appended with the corresponding target primary key, and
the value is left empty; thus secondary index lookups are
translated into RocksDB range queries. All RocksDB keys
are prefixed by a 4-byte table-ID or index-ID so that multi-
ple tables or indexes can co-exist in one RocksDB key space.
Finally, a global sequence ID, incremented with each write
operation, is stored with each key-value pair to support
snapshots. Snapshots are used to implement multiversion
concurrency control, which in turn enables us to implement
ACID transactions within RocksDB.

In the next section, we provide a brief background on
LSM-trees. In Section 3 we describe our techniques to re-
duce space amplification. In Section 4 we show how we bal-
ance space amplification with read amplification and CPU
overhead. Finally, in Section 5 we present the results of ex-
perimental evaluations using realistic production workloads
(TPC-C and LinkBench) and measurements taken from pro-
duction instances of the database. We close with concluding
remarks.

2. LSM-TREE BACKGROUND
Log Structured Merge Trees (LSM-trees) are used in many
popular systems today, including BigTable [15], LevelDB,
Apache Cassandra [16], and HBase [17]. Significant recent
research has focused on LSM-trees; e.g., [18, 19, 20, 21, 22].
Here we briefly describe the LSM-tree as implemented and
configured in MyRocks at Facebook by default.

Whenever data is written to the LSM-tree, it is added to
an in-memory write buffer called mem-table, implemented as
a skiplist having O(log n) inserts and searches. At the same
time, the data is appended to a Write Ahead Log (WAL) for
recovery purposes. After a write, if the size of the mem-table
reaches a predetermined size, then (i) the current WAL and
mem-table become immutable, and a new WAL and mem-
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Figure 2: Compaction. The contents of a selected level-i SST
file is merged with those SST files at level i+1 that have key
ranges overlapping with the key range of the level-i SST. The
shaded SST files in the top part of the figure are deleted after
the merge process. The shaded SST files in the bottom part of
the figure are new files created from the compaction process. The
compaction process removes data that has become obsolete; i.e.,
data that has been marked as deleted and data that has been
overwritten (if they are no longer needed for snapshots).

table are allocated for capturing subsequent writes, (ii) the
contents of the mem-table are flushed out to a “Sorted Se-
quence Table”(SST) data file, and upon completion, (iii) the
WAL and mem-table containing the data just flushed are
discarded. This general approach has a number of favorable
consequences: new writes can be processed concurrently to
the flushing of an older mem-table; all I/O is sequential,2

and, except for the WAL, only entire files are ever written.
Each of the SSTs stores data in sorted order, divided into

unaligned 16KB blocks (when uncompressed). Each SST
also has an index block for binary search with one key per
SST block. SSTs are organized into a sequence of levels of
increasing size, Level-0 – Level-N, where each level will have
multiple SSTs, as depicted in Figure 1. Level-0 is treated
specially in that its SSTs may have overlapping key ranges,
while the SSTs of higher levels have distinct non-overlapping
key ranges. When the number of files in Level-0 exceeds a
threshold (e.g., 4), then the Level-0 SSTs are merged with
the Level-1 SSTs that have overlapping key ranges; when
completed, all of the merge sort input (L0 and L1) files are
deleted and replaced by new (merged) L1 files. For L>0,
when the combined size of all SSTs in level-L exceeds a
threshold (e.g., 10(L−1)GB) then one or more level-L SSTs
are selected and merged with the overlapping SSTs in level-
(L+1), after which the merged level-L and level-(L+1) SSTs
are removed. This is shown in Figure 2.

The merging process is called compaction because it re-
moves data marked as deleted and data that has been over-
written (if it is no longer needed). This is implemented
using multiple threads. Compaction also has the effect of
gradually migrating new updates from Level-0 to the last
level, which is why this particular approach is referred to
as “leveled” compaction.3 The process ensures that at any

2There are usually concurrent streams of sequential IO that
will cause seeks. However, the seeks will be amortized over
LSM-tree’s very large writes (many MB rather than KB).
3Leveled compaction is different that the compaction meth-
ods used, say, by HBase and Cassandra [23]. In this paper,

given time, each SST will contain at most one entry for any
given key and snapshot. The I/O that occurs during com-
paction is efficient as it only involves bulk reads and writes
of entire files: if a level-L file being compacted overlaps with
only part of a level-(L+1) file, then nevertheless the entire
level-(L+1) file is used as an input to the compaction and
ultimately removed. A compaction may trigger a set of cas-
cading compactions.

A single Manifest File maintains a list of SSTs at each
level, their corresponding key ranges, and some other meta
data. It is maintained as a log to which changes to the SST
information are appended. The information in the manifest
file is cached in an efficient format in memory to enable quick
identification of SSTs that may contain a target key.

The search for a key occurs at each successive level un-
til the key is found or it is determined that the key is not
present in the last level. It begins by searching all mem-
tables, followed by all Level-0 SSTs and then the SST’s at
the next following levels. At each of these successive levels,
three binary searches are necessary. The first search locates
the target SST by using the data in the Manifest File. The
second search locates the target data block within the SST
file by using the SST’s index block. The final search looks for
the key within the data block. Bloom filters (kept in files but
cached in memory) are used to eliminate unnecessary SST
searches, so that in the common case only 1 data block needs
to be read from disk. Moreover, recently read SST blocks
are cached in a block cache maintained by RocksDB and the
operating system’s page cache, so access to recently fetched
data need not result in I/O operations. The MyRocks block
cache is typically configured to be 12GB large.

Range queries are more involved and always require a
search through all levels since all keys that fall within the
range must be located. First the mem-table is searched for
keys within the range, then all Level-0 SSTs, followed by all
subsequent levels, while disregarding duplicate keys within
the range from lower levels. Prefix Bloom filters (§4) can
reduce the number of SSTs that need to be searched.

To get a better feel for the systems characteristics of LSM-
trees, we present various statistics gathered from three pro-
duction servers in the Appendix.

3. SPACE AMPLIFICATION
An LSM-tree is typically far more space efficient than a B-
tree. Under read/write workloads similar to those at Face-
book, B-tree space utilization will be poor [24] with its pages
only 1/2 to 2/3 full (as measured in Facebook production
databases). This fragmentation causes space amplification
to be worse than 1.5 in B-tree-based storage engines. Com-
pressed InnoDB has fixed page sizes on disk which further
wastes space.

In contrast, LSM-trees do not suffer from fragmentation
because it does not require data to be written to SSD page-
aligned. LSM-tree space amplification is mostly determined
by how much stale data is yet to be garbage-collected. If we
assume that the last level is filled to its target size with data
and that each level is 10X larger than the previous level,
then in the worst case, LSM-tree space amplification will be
1.111..., considering that all of the levels up to the last level
combined are only 11.111...% the size of the last level.

all uses of the term compaction refer to leveled compaction.



RocksDB uses two strategies to reduce space amplifica-
tion: (i) adapting the level sizes to the size of the data, and
(ii) applying a number of compression strategies.

3.1 Dynamic level size adaptation
If a fixed size is specified for each level, then in practice it
is unlikely that the size of the data stored at the last level
will be 10X the target size of the previous level. In a worse
case, the size of the data stored at the last level will only be
slightly larger than the target size of the previous level, in
which case space amplification would be larger than 2.

However, if we dynamically adjust the size of each level to
be 1/10-th the size of the data on the next level, then space
amplification will be reduced to less than 1.111....

The level size multiplier is a tunable parameter within an
LSM-tree. Above, we assumed it is 10. The larger the size
multiplier is, the lower the space amplification and the read
amplification, but the higher the write amplification. Hence,
the choice represents a tradeoff. For most of the Facebook
production RocksDB installations, a size multiplier of 10 is
used, although there are a few instances that use 8.

An interesting question is whether the size multiplier at
each level should be the same. The original paper on LSM-
trees proved that it is optimal to have the same multiplier
at each level when optimizing for write amplification [14].4

It is an open question of whether this also holds true when
optimizing for space amplification, especially when consider-
ing that different levels may use different compression algo-
rithms resulting in different compression ratios at each level
(as described in the next section). We intend to analyze this
question in future work.5

3.2 Compression
Space amplification can be further reduced by compressing
the SST files. We apply a number of strategies simultane-
ously. LSM-trees provide a number of properties that make
compression strategies more efficacious. In particular, SSTs
and their data blocks in LSM-trees are immutable.

Key prefix encoding. Prefix encoding is applied on
keys by not writing repeated prefixes of previous keys. We
have found this reduces space requirements by 3% – 17% in
practice, depending on the data workload.

Sequence ID garbage collection. The sequence ID
of a key is removed if it is older than the oldest snapshot
needed for multiversion concurrency control. Users can ar-
bitrarily create snapshots to refer to the current database
state at a later point in time. Removing snapshot IDs tends
to be effective because the 7 byte large sequence ID does not
compress well, and because most of the sequence IDs would
no longer be needed after the corresponding snapshots that
refer to them have been deleted. In practice, this optimiza-
tion reduces space requirements from between 0.03% (e.g.,
for a database storing social graph vertexes that will have
large values) and 23% (e.g., for a database storing social
graph edges that will have empty values) .

4The original LSM-tree paper uses a fixed number of lev-
els and varies the multiplier as the database gets larger,
but keeping the multiplier the same at each level. Lev-
elDB/RocksDB use a fixed multiplier but varies the number
of levels as the database gets larger.
5Initial results indicate that adapting the size targets at each
level to take into account the compression ratios achieved at
each level lead to better results.

Data compression. RocksDB currently supports several
compression algorithms, including LZ, Snappy, zlib, and Zs-
tandard. Each level can be configured to use any or none
of these compression algorithms. Compression is applied
on a per-block basis. Depending on the composition of the
data, weaker compression algorithms can reduce space re-
quirements down to as low as 40%, and stronger algorithms
down to as low as 25%, of their original sizes on production
Facebook data.

To reduce the frequency of having to uncompress data
blocks, the RocksDB block cache stores blocks in uncom-
pressed form. (Note that recently accessed compressed file
blocks will be cached by the operating system page cache
in compressed form, so compressed SSTs will use less stor-
age space and less cache space, which in turn allows the file
system cache to cache more data.)

Dictionary-Based Compression. A data dictionary
can be used to further improve compression. Data dictio-
naries can be particularly important when small data blocks
are used, as smaller blocks typically yield lower compression
ratios. The dictionary makes it possible for smaller blocks to
benefit from more context. Experimentally, we have found
that a data dictionary can reduce space requirements by an
additional 3%.

LSM-trees make it easier to build and maintain dictionar-
ies. They tend to generate large immutable SST files that
can be hundreds of megabytes large. A dictionary that is ap-
plied to all data blocks can be stored within the file so when
the file is deleted, the dictionary is dropped automatically.

4. TRADEOFFS
LSM-trees have many configuration parameters and options,
enabling a number of tradeoffs for each installation given the
particulars of a target workload. Prior work by Athanas-
soulis et al. established that one can optimize for any two
of space, read, and write amplification, but at the cost of
the third [13]. For example, decreasing the number of levels
(say by increasing the level multiplier) decreases space and
read amplification, but increases write amplification.

As another example, in LSM-trees, a larger block size
leads to improved compression without degrading write am-
plification, but negatively affects read amplification (since
more data must be read per query). This observation allows
us to use a larger block size for better compression ratios
when dealing with write heavy applications. (In B-Trees,
larger blocks degrade both write and read amplification.)

Tradeoffs in many cases involve judgement calls and de-
pend on the expected workload and perceived minimal ac-
ceptable quality of service levels. When focusing on effi-
ciency (as we do), it is exceedingly difficult to configure the
system to properly balance CPU, disk I/O, and memory
utilization, especially because it is strongly dependent on a
highly varying workload.

As we show in the next section, our techniques reduce
storage space requirements by 50% over InnoDB. This allows
us to store twice as much data on each node, which in turn
enables significant consolidation of existing hardware. At
the same time, however, this also means that we double the
workload (QPS) per server, which could cause the system to
reach the limits of available CPU, random I/O, and RAM
capacity.



Tiered compression. Compression generally decreases
the amount of storage space required, but increases CPU
overheads, since data has to be compressed and decom-
pressed. The stronger the compression, the higher the CPU
overhead. In our installations, a strong compression algo-
rithm (like zlib or Zstandard) is typically used at the last
level even though it incurs higher CPU overhead, because
most (close to 90%) of the data is located at that level, yet
only a small fraction of reads and writes go to it. In vari-
ous use cases, applying strong compression to the last level
saves an additional 15%–30% in storage space over using
lightweight compression only.

Conversely, we do not use any compression at levels 0–2
to allow for lower read latencies at the cost of higher space-
and write-amplification, because they use up only a small
proportion of the total storage space. Level-3 up to the
last level use lightweight compression (like LZ4 or Snappy)
because its CPU overhead is acceptable, yet it reduces space
and write amplification. Reads to data located in the first
three levels will more likely be located in (uncompressed) file
blocks cached by the operating system because these blocks
are frequently accessed. However, reads to data located in
levels higher than 2 will have to be uncompressed, whether
they are located in the operating system file cache or not
(unless they are also located in the RocksDB block cache).

Bloom filters. Bloom filters are effective in reducing
I/O operations and attendant CPU overheads, but at the
cost of somewhat increased memory usage since the filter
(typically) requires 10 bits per key. As an illustration that
some tradeoffs are subtle, we do not use a Bloom filter at the
last level. While this will result in more frequent accesses
to last-level files, the probability of a read query reaching
the last level is relatively small. More importantly, the last-
level bloom filter is large (∼9X as large as all lower-level
Bloom filters combined) and the space it would consume
in the memory-based caches would prevent the caching of
other data that would be being accessed. We determined
empirically that not having a Bloom filter for the last level
improved read amplification overall, given our workloads.

Prefix Bloom filters. Bloom filters do not help with
range queries. We have developed a prefix Bloom filter
that helps with range queries, based on the observation that
many range queries are often over a prefix; e.g., the userid
part of a (userid,timestamp) key or postid of a (postid,likerid)
key. We allow users to define prefix extractors to deter-
ministically extract a prefix part of the key from which we
construct a Bloom filter. When querying a range, the user
can specify that the query is on a defined prefix. We have
found this optimization reduces read amplification (and at-
tendant CPU overheads) on range queries by up to 64% on
our systems.

5. EVALUATION
A review of numerous MySQL installations at Facebook gen-
erally reveal that

1. the storage space used by RocksDB is about 50% lower
than the space used by InnoDB with compression,

2. the amount of data written to storage by RocksDB is
between 10% and 15% of what InnoDB writes out, and
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Figure 3: LinkBench benchmark. Statistics gathered from
the 24th hour of 24 hour runs with 16 concurrent clients for 3
different storage engines: RocksDB (from Facebook MySQL 5.6)
shown in red, InnoDB (from MySQL 5.7.10) shown in blue, and
TokuDB (Percona Server 5.6.26-74.0) shown in green, configured
to use the compression scheme(s) listed in brackets. (Sync-on-
commit was disabled, binlog/oplog and redo logs were enabled.)

System setup: The hardware consisted of an Intel Xeon E5-
2678v3 CPU with 24-cores/48-HW-threads running at 2.50GHz,
256GB of RAM, and roughly 5T of fast NVMe SSD provided via
3 devices configured as SW RAID 0. The operating system was
Linux 4.0.9-30

Left hand side graphs: Statistics from LinkBench configured to
store 50M vertices, which fits entirely in DRAM.

Right hand side graphs: Statistics from LinkBench configured
to store 1B vertices, which does not fit in memory after constrain-
ing DRAM memory to 50GB: all but 50GB of RAM was mlocked
by a background process so the database software, OS page cache
and other monitoring processes had to share the 50GB. The My-
Rocks block cache was set to 10GB.

3. the number and volume of reads is 10% – 20% higher in
RocksDB that for InnoDB (yet well within the margin
of acceptability).

For more meaningful metrics from controlled environments,
we present the results of extensive experiments using two
benchmarks with MySQL. The first benchmark, LinkBench,
is based on traces from production databases that store ”so-
cial graph” data at Facebook; it issues a considerable num-
ber of range queries [25]. We ran 24 1 hour intervals of



0

1

2

3

4

5

6

7

m
illi
se
co
nd
s

Update	Vertex Get	Vertex
Update	Link Get	Link

Figure 4: LinkBench Quality of Service: 99th percentile
latencies for: Update Vertex, Get Vertex, Update Link, Get Link.
The setup of the hardware and storage engines are as described in
Figure 3. The database with 1B vertices was used with available
DRAM constrained to 50GB.

LinkBench and measured statistics for the 24th interval to
obtain numbers from a steady-state system.6 The second
benchmark is the standard TPC-C benchmark.

For both benchmarks, we experimented with two variants:
one where the database fit in DRAM so that disk activity
was needed only for writes to achieve durability, and one
where the database did not fit in memory. We compare the
behavior of RocksDB, InnoDB, and TokuDB, configured to
use a variety of compression strategies. (TokuDB is another
open source, high-performance storage engine for MySQL
which at its core uses a fractal tree index tree data structure
to reduce space and write amplification [26].)

Figure 3 shows the results from our LinkBench experi-
ments. The hardware and software setup used is described
in the figure caption. Some observations for the LinkBench
benchmark with a database that does not fit in memory:

• Space usage: RocksDB with compression uses less
storage space than any of the alternatives considered;
without compression, it uses less than half as much
storage space as InnoDB without compression.

• Transaction throughput: RocksDB exhibits higher
throughput than all the alternatives considered: 3%-
16% better than InnoDB, and far better than Toku-
DB. What is not visible in the graph is that in all
cases, CPU is the bottleneck preventing throughput
to further increase.

• CPU overhead: When stronger compression is used,
RocksDB exhibits less than 20% higher CPU overhead
per transaction compared to InnoDB with no com-
pression, but less than 30% as much CPU overhead
as TokuDB. RocksDB with strong compression incurs
only 80% as much CPU overhead as InnoDB with com-
pression.

• Write Volume: The volume of data written per trans-
action in RocksDB is less than 20% of the volume of
data written by InnoDB.7 RocksDB write volume is
significantly lower than TokuDB write volume.

6We also gathered statistics when loading the full LinkBench
database; the results (not shown) are in line with the steady-
state numbers.
7The I/O volume numbers were obtained from iostat. The
write volume numbers had to be adjusted because io-
stat counts TRIM as bytes written when in fact none
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Figure 5: TPC-C Benchmarks. Metrics obtained using the
same setup as in Figure 3.
Left hand side: configuration of 40 warehouses and 10 concur-
rent clients. The database fits entirely in memory. The statistics
were gathered over the entire 15th hour after 14 hours of opera-
tion.
Right hand side: configuration of 1,000 warehouses and 20 con-
current clients. The statistics were gathered over the entire 12th
hour after 11 hours of operation. The transaction isolation lev-
els used are marked as “rc” for READ COMMITTED or “rr” for
REPEATABLE READ.

• Read Volume: The volume of data read per read
transaction in RocksDB is 20% higher than InnoDB
when no compression is used, and between 10% and
22% higher when compression is used. RocksDB read
volume is significantly less than TokuDB read volume.

Figure 4 depicts the quality of service achieved by the dif-
ferent storage engines. Specifically, it shows the 99-th per-
centile latencies for read and write requests on both ver-
tices and edges in the LinkBench database. The behavior of
RocksDB is an order of magnitude better than the behavior
of all the other alternatives considered.

are. RocksDB frequently deletes entire files (in contrast to
InnoDB) and uses TRIM for that, which iostat reports as if
the entire file had been written.



The results of the TPC-C benchmark are shown in Fig-
ure 5. The database size statistics are more difficult to in-
terpret here because the TPC-C database grows with the
number of transactions. For example, InnoDB with com-
pression is shown to require a small storage footprint, but
this is only the case because this InnoDB variant was able
to process far fewer transactions up to the point the mea-
surements were taken; in fact, InnoDB database size grows
much faster in transaction time than RocksDB.

The figure clearly shows that RocksDB is not only com-
petitive on OLTP workloads, but generally has higher trans-
action throughput while requiring significantly less storage
space than the alternatives. RocksDB writes out less data
per transaction than all the other configurations tested, yet
reads only marginally more and requires only marginally
more CPU overhead per transaction.

6. CONCLUDING REMARKS
We described how RocksDB was able to reduce storage space
requirements by 50% over what InnoDB would need, while
at the same time increasing transaction throughput and sig-
nificantly decreasing write amplification, yet increasing av-
erage read latencies by a marginal amount. It did so by
leveraging LSM-trees and applying a variety of techniques
to conserve space.

A number of these techniques were, as far as we are aware,
described for the first time, including: (i) dynamic LSM-tree
level size adjustment based on current DB size; (ii) tiered
compression where different levels of compression are used at
different LSM-tree levels; (iii) use of a shared compression
dictionary; (iv) application of Bloom filters to key prefixes;
and (v) use of different size multipliers at different LSM-
tree levels. Moreover, we believe this is the first time a
storage engine based on an LSM-tree has been shown to have
competitive performance on traditional OLTP workloads.
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APPENDIX
In this appendix, we present various statistics from three
LSM tree-based systems currently in production. The intent
is to provide the reader with a better feel for how LSM tree-
based systems behave in practice.

The statistics we present were gathered from representa-
tive servers in production running MySQL/MyRocks servers
in production serving Social Network queries. The workload
is update-heavy. The data presented here was collected over
an observation period of over one month.

Figure 6 depicts the number of files at each level at the
end of the observation period. Figure 7 depicts the aggregate
size of the files at each level at the end of the observation
period. In both figures, the relative differences between the
numbers of different levels provide more insight than the
absolute numbers. The figures shows that the number of
files and the aggregate size of the files grow by roughly a
factor of 10 at each level, which is what one would expect
given the description in Section 2.

Figure 8 shows the number of compactions that occurred
at each level during the observation period. Again, the abso-
lute numbers are not very meaningful, especially since they
are highly affected by configuration parameters. The first
set of bars on the left represent instances of copying a mem-
table to an L0 file. The second set of bars represent the
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Figure 6: Number of files at each level. Note the logarithmic
scale of the y-axis. Level 0 is not included as the number of files
for that level oscillates between 0 and 4 and the reported value
largely depends on when the snapshot is taken.
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Figure 7: Aggregate size of all files for each level in
Megabytes. Note the logarithmic scale of the y-axis. Level
0 is not included for the same reason described as in Fig. 6.

merging of all L0 files into L1; hence each such compaction
involves far more data than, say, a compaction merging an
L1 file into L2.

Figure 9 depicts the amount of data written to disk (in
GB) for each level during the observation period, broken
down into writes for new data, writes for data being up-
dated, and writes for data being copied from an existing
SST at the same level. Writes to Level 0 are almost entirely
new writes, represented by the red bars. The data needs to
be interpreted with care: a new data write at level Li only
implies that the key of the kv-pair was not present at that
level when the data was written but the key may well be
present at level Lj with j > i.
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Figure 8: Number of compactions at each level for the
three systems during the observation period. Note that
the y-axis is not in logarithmic scale.
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Figure 9: Disk writes at each level for the three systems.
The height of each bar represent the total number of bytes written
to disk at each level during the observation period. This is further
broken down into (i) in red: writes of new data, i.e., with a key
that does not currently exist at that level, (ii) in yellow: writes
of data being updated. i.e., with a key that already exists at
that level, and (iii) in blue: writes for data being copied from
an existing SST at that same level. The y-axis has been hidden
as the absolute numbers are not informative. The y-axis is not
scaled logarithmically.
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Figure 10: Location of target read query data. Each bar
shows the percentage of read queries served from each possible
source. Note that the graph has a logarithmic y-axis. The read
queries represented in this graph are those aggregated over the
three systems being monitored. 79.3% of all read queries are
served from the RocksDB block cache. Read queries not served
from the block cache are served from L0, L1, L2, L3, or L4 SST
files. Some of those are served from the operating system page
cache, which therefore do not require any disk accesses. Less than
10% of read queries result in a disk access.

Figures 10 and 11 depict the location from where read
query data is served. For this figure, we aggregated the
number of reads from all three systems. A majority of read
requests are successfully served by the RocksDB block cache:
for data blocks, the hit rate is 79.3%, and for meta data
blocks containing indices and Bloom filters, the hit rate is
99.97%. Misses in the RocksDB cache result in file sys-
tem reads. The figure shows that the majority (52%) of file

system reads are serviced from the operating system page
cache, with the page cache hit rate being 98%, 98%, 93%,
77%, and 46% for levels L0-L4, respectively. However, given
the fact that almost 90% of the disk storage space is used
to hold data from the last level, L4, and given that L4 data
has a poorer RocksDB block cache hit rate, 92% of all read
queries that miss in the block cache are served by L4. Since
most file accesses are to L4 SSTs, it is clear that Bloom fil-
ters are helpful in reducing the number of file accesses at
levels L0–L3 for these read queries.
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Figure 11: Location of target read query data when
not in the RocksDB block cache. The graph depicts the
same data as in Figure 10 but for read accesses that miss in the
RocksDB block cache. Note that the graph does not have a loga-
rithmic y-axis. The graph shows that the overwhelming majority
(82%) of read queries that miss in the RocksDB block cache are
served from L4, the last level. For those read queries, the data is
located in the OS file page cache in 46% of the cases.


